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Super a5 Titanium Aluminides

Introduction

Super o, titanium aluminides have attracted much attention in aircraft industry because of
their light weight, high strength and stiffness, and high temperature resistance. Although this alloy
was designed for improved mechanical properties in service, it exhibits low ductility at low
temperatures and has limited workability compared to conventional titanium alloys. For
successful manufacturing using this alloy it is desirable to find the mechanical as well as
microstructural conditions at which the alloy can be processed with optimum efficiency. Flow
behavior of the alloy through compression testing at various temperatures and strain rates were
performed to determine the constitutive relation at high strain rates. From the constitutive relation a
- dynamic material modeling on super o) was carried out to optimize processing conditions such as
temperature and strain rate. In addition, workability tests and microstructural characterizations
were conducted to show the effect of the optimization on the formability and the resulting
microstructure.

Experimental Procedure

The material used in this project was Ti-14Al1-20Nb-3.2V-2Mo (wt%) produced by RMI
Titanium Co. , Niles, Ohio. The materials were cast, forged, and hot rolled and was in the form of
hot rolled plate with thickness of 0.782 and 0.804 inch. As-received microstructure is shown in
Figure 1.

Both flow stress-strain testing and workability testing were carried out in compréssion with
cylindrical specimens. The specimens had a diameter of 0.5 inches and a height of 0.625 inches.
For flow stress-strain testing, the test matrix is as follows:

Temperature, C (F): 843 (1550), 899 (1650), 954 (1750), and 1010 (1850)
Strain rate, s-1: 0.1, 2, 4, 6, and 8.

Workability tests was conducted at temperatures of 843 C (1550 F) and 1010 C (1850 F),
and strain rate of 4 s-1.

Microstructural analysis of the deformed specimens was conducted using scanning electron
microscope (SEM) with backscattered electron image (BEI). Specimens were cut through the
compression axis (longitudinal) and transverse direction, and micrographs were taken at the center
of the specimens.

Results

All the true stress-true strain flow curves with corresponding microstructures are shown in
Figures 2 to 20. Table 1 is a list of the figures, test conditions and the observed microstructure.
True stress versus strain rate was plotted in log-log scale in Figure 21 at a true strain of 0.2. The
slope of the plot gave the strain rate sensitivity m, which is not a constant over the range of strain
rate tested. Log stress vs. 1/T at 0.2 true strain is shown in Figure 22. Processing map at this
strain was developed for super o2 (Figure 23).

The results for workability tests are shown in Figures 24 for specimens tested at 843 C,
and Figure 25 at 1010 C. At 843 C, there were no tensile cracks observed on the surfaces of the
specimens, but slip bands formed due to localized shear at some strain combinations. As
temperature was increased to 1010 C, workability increased extensively.




Table 1. List of figures, testing conditions and microstructural observations.

Figure | Temperature | Strain Rate Microstructure Page
No F S-1 Backscattering Images (BE No
1 As-received (a2+f) hot rolled plate. 3
2 1550 (843) 0.1 Elongated o stringers in a (02-+f3) matrix, 4
where a2 shows an elongated plate morphology,

(longitudinal view).

3 1550 (843) 2.0 Same as above, but o stringers are slightly 5
larger, (longitudinal view).

4 1550 (843) 6.0 Same as above, but o2 plates in the (a2+8) 6
matrix are finer, (transverse view).

5 1550 (843) 8.0 Same as above, but o2 stringers and the o2 7
plates in the (c2+f8) matrix are finer.

6 1650 (899) 0.1 Same as above, but the a2 stringers and o) 8
plates in the (a2+f3) matrix are coarser at this
temperature, (transverse view).

7 1650 (899) 2.0 Same as above, but the o stringers have 9
decreased in aspect ratio, (transverse view).

8 1650 (899) 4.0 Same as above, but the o2 plates from the matrix 10
appear more elongated, (transverse view).

9 1650 (899) 6.0 Same as above, but the 2 stringers increased in 11
aspect ratio, (transverse view).

10 1650 (899) 8.0 Similar to microstructures 9, (transverse view). 12

11 1750 (954) 0.1 Small and rod-like o stringers and elongated 13
plates of a2 plates in the (a2+f8) matrix,

(longitudinal view).

12 1750 (954) 20 Same as above, (longitudinal view). 14

13 1750 (954) 4.0 Coarse and elongated o2 stringers, (transverse 15
view).

14 1750 (954) 6.0 Same as above, (transverse view). 16

15 1750 (954) 8.0 Flat stringers of a2 in fine (02+f8) matrix, 17
(longitudinal view)..

16 1850 (1010) 0.1 Large aspect ratio rod-like o2 stringers in a 18
(c2+P) matrix, where the proportion of 2 is
decreasing, (longitudinal view).

17 1850 (1010) 2.0 Same as above, but the a2 phase in the (a2+f) 19
matrix is very fine and decreasing in proportion,
_(longitudinal view).

18 1850 (1010) 4.0 Coarse and elongated a stringers the o2 phase 20
in the (02+f) matrix is becoming coarser,

(transverse view).

19 1850 (1010) 6.0 Coarse and elongated a2 stringers the o phase 21

in the (02+f3) matrix is becoming coarser,
(transverse view).
20 1850 (1010) 8.0 Same as microstructure 17, (longitudinal view). 22




Figure 1. As-received microstructure of
the hot rolled plate: (a) longitudinal and
(b) transverse optical views, and (c) BEI
image showing; a,-elongated globuli
(dark) in a (o2 + B) matrix.
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Figure 3. Compression true stress-true strain curve performed at 1550 F (843 C) and at a strain rate of 2.0 s-1.
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The microstructure is a BEI view from the longitudinal axis of the specimen.
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TEST NUMBER: RAPS
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Figure 5. Compression true stress-true strain curve performed at 1550 F (843 C) and at a strain rate of 8.0 s-1.
The microstructure is a BEI view from the longitudinal axis of the specimen.
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TEST NUMBER: RAP20

STRAN RATE: 2 in/in/sec

TEMPERATURE: %650 F

LUBRICANT: TK-13073
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Figure 7. Compression true stress-true strain curve performed at 1650 F (899 C) and at a strain rate of 2.0 s-1.

The microstructure is a BEI view from the transverse axis of the specimen.
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Figure 14. Compression true stress-true strain curve performed at 1750 F (954 C) and at a strain rate of 6.0 s-1.

The microstructure is a BEI view from the transverse axis of the specimen.
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performed at 1750 F (954 C) and at a strain rate of 8.0 s-1.

The microstructure is a BEI view from the longitudinal axis of the specimen.

Figure 15. Compression true stress-true strain curve
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The microstructure is a BEI view from the longitudinal axis of the specimen.
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Figure 20. Compression true stress-

The microstructure is a BEI view from the longitudinal axis of the specimen.
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Figure 23. Processing map of Super a2 at a true strain of 0.2.
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Figures 24. Workability of super a2 at 843 C (1550 F).
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Summary

Compressive testing has been performed on super a2 titanium aluminide over a range of
temperatures and strain rates. The experimental conditions used in this work are representative of
those used in conventional metalforming practices. From the stress-strain curves, the flow
behavior was characterized and a map which indicates the optimum processing conditions was
generated by employing the dynamic material modeling approach. The microstructure was
characterized from the as-quenched specimens by SEM and are presented for each testing condition
under the stress-strain curves. The testing was performed in the (a2 + B)-field of the material,
with the proportion of B—phase increasing with increase in temperature.

Implementation of Data Provided by the Atlas of Formability

The Atlas of Formability program provides ample data on flow behavior of various
important engineering materials at different temperatures and strain rates. The data are valuable in
design of metalforming processes with advanced materials. Microstructural changes with
temperature and strain rates are also given in the Bulletin, which would help the design engineer to
select processing parameters which lead to the desired microstructure.

The data can also be used to construct processing map with dynamic material modeling
approach, giving stable and unstable regions in terms of temperature and strain rate. The
temperature and strain rate at the highest efficiency in the stable region provide the optimum
processing condition. In some metalworking processes such as forging, the final strain and strain
rate vary at different position in the work piece. An analysis of the process with FEM can ensure
that the strain rates at the processing temperature in the whole workpiece fall into the stable regions
in the processing map. Furthermore, FEM analysis with the data from the Atlas of Formability can
also be coupled with fracture criteria to predict defect formation in metalworking processes.

Using the data provided by the Atlas of Formability, FEM design of metalforming
processes, dynamic material modeling, defect prediction in forming processes, microstructure
characterization of deformed materials are common practice in Concurrent Technologies
Corporation. Any needs in solving problems in metalworking processes can be directed to Dr.
Prabir K. Chaudhury, Manager of the Atlas of Formability project, at (814) 269-2594.
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